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‘The Coincidence of Measure Algebras
Under an Exchangeable Probability

By

Richard A. Olshen
Stanford University

l; Introduction. This note ié concerned with countably infinite
product cffields énd their invariant, £ail, andiexchangeable sub~-g=-fields.
Under an exchangeable probability the three sub~g-fields coincide as
measure algebras (ﬁﬁe theorems (1) and (7)). An imuediate comsequence
.is the>HEWitt;Savage 0=1 law. A later section includes examples Which
by and large preclude extensions of (1) and (7) to probabilities merely
invariant un@er the shift. However, at least one interesting conjecture
of David Freedman remains to be settled. I thank him for helpful con-
versations. )

The results presented here serve td‘clarify and extend a remark by
Halmos about power product'probabilities ([4], p. L93). They also'extend
& theorem set forth by Meyer (71, p. 150) to the effect that in a ﬁni-
lateral countable product space, under an exchangeable probability, ex-
changeable and tail g-fields coincide as measure algebras.l

The final éection contains the answer to a question posed in the

paper [3] by Chung and Doob.

l. Meyer attributes this result to Hewitt and Savage [4], and indeed
one can argue that it is implicit there. I do not agree that it is

"the main result of Hewitt and Savage".



2. Notation. If (Q,8) is a measursble space and I is either
the set of intégers (Z) or the sét of posifive integers (Z+), then
0 =1) = Qi, and % is the product o—fieid. To avoid trivialities,
assume £hat 8 £ {Q,f}. Here and in the remainder ofyfhe note = refers
to a fiied permutation of ‘I which leavés all but finitely maﬁyfmembers
fixed, To each = corresponds a 1-1, bimeasurable map éﬂ of @ onfo
itself. More precisely, if e & has coordinates G(i), then

(aﬂa)(i) = w(x(i)). The set E is exchangeable provided E ¢ 3 and

aﬂE = E for each wn. The collection of such sets is a o-field, the

exchangeable &-fiéid; it is denoted by €. Context determines which
I is pertineﬁt.

The shift S maps & onto itself by (35)(15 = w(i+l); plainly,
S is measurable. if I =%2,8 is l—l and bimeasurable, while if
I= Z+, it is 'decAidedly not 1-1. And in the latter case if (Q,8) is
the Borel structure of a Borel set; then S is bimeasurable iff O is
countable. This is a special case of a difficult theorem of Purves [8];
however, it is rather easy té give a direct proof based on the fact that
there,éxiét Borel subsets of the unit square whose projections on an
axis are not Borel. If F e & and S-lF = F, then F dis invariant.

The invariant sets form a o-field g;, the invariant o-field. As with

vg, the notation contains no reference to the index set I.
Suppose J < I. Define B(J) to be the o-field of subsets B of
B with this special property: if & ¢ B and w'(3) = o(j) for all

j e J, then @' e B. Of course B(I) = 3.



3. The case I = Z+. As the heading suggests, throughout this sec-

+ion I is the set of positive integers. Define the future talil o-field to be

noﬁl g(i: i > n), and denote it by § . It is well-known and easily proved
- - ' . ~ ~t ~ (
that in the present case, < § < &, and the inclusions are proper. A

probability P on 8 is an exchangeable probability provided B ¢ 3

implies P(aﬂB) = P(B) for each m. A consequence of the following
result is that under an exchangeable P, .5, and & are identical as
measure algebras. |

(1) Theorem. If P is @cbhangeable and E e &, then P(EAS-:LE) = 0.

Proof. Fix 7y > 0. A standard result from measure theory insures

the existence of m< o and We 8(i: 1<i<m) for which

'(2‘) P(WAE) <7 ,

ot

by

where A  means symmetric difference. Define a o OB

Wy Way eas W, W w =
aﬂ*( 1’ T2’ w  mtl’ w2’ )

vas W

m’ @,

(wm+l, Wy, Wy, MPPRERE Yo

Then aﬂ*WA:E = a;[*WA a 4B = aﬁ*(WAE); consequently

- (3) - P(a W AE) = P(a ,(WAE)) = P(WAE) .

Now ™MW = a_yW. So according to (2) and (3),

(4) 'P(S"IlWAW) =P(a_WAW) < P(a_,WAE) + P(EAW) %27 .

Also,



(5) p(shwas7lm) =P(s" WA E)) =PWAE)

, : ] -1
for S is measure-preserving. (It is enough that P(87°C) = P(C)
when C is a cylinder, and this is given.)

Finally, (2), (%), and (5) together say that
P(E A s~1m) < P(E A W) + P(WA s'lw) + P(s'lWA S-]E) < hy . <

(6) Corollary (Hewitt-Savage O0-1 law). If P is a power product

probability, then E € g implies P(E) = P2(E).

' * - *
Proof. Iet E = lim sup S "E. In view of (1), P(EAE ) = 0.

* ~ a4 " .
Now E €T, so apply the Kolmogorov O-1 law. <

L. The case I =2%Z. When I =12, as is the case in this section,
the relationships among invariant, tail, and exchangeable c—fields are
+ .
not so simple as when I =2Z . In fact, there are several tail og-fields

5

of interest. '01early, can be defined as in Section 3. But.also

df n=1

the past tail o-field %_ merits study, where %_ = ﬁ B(i: 1 < -n).
Obviousl&, %+ and %_ are proper sub-g-fields of %f, the smallest

g-field confaininé them both. I learned from David Freedman (ofél conm-~
unication) that.alsq %f is a proper sub-g-field of g =

3t n@l ﬁ(i:!i|211).

He begins with the §pecial case in which 8 has four members as Ffollows.

Let § = (.e.S_l, 86, 8,5 «e.) be a (bilateral) sequence of random

variables with 60’»61’ .os independent and identically distributed,
1) = oo =X

and P(aO =1) = P(6O\-— -1) = 5



Suppose that for 1>1,8 ; = 61(1[60=l]_1[60=-l])' Then also

o) 1,8 5 ... are independent; and, by the Kolmogorov O0-1 law, both
- e .

past tail -and future tail o-fields of this process are trivial, but for
every n, SO is determined by any pair {61’6-1} with 170, hence by
{Si: 1] > n}. Thus % is not trivial. To deduce the general case,

pick AeB, A £Q, f. Fix weh, w,eA®. TFor BB, let P(B) =0 if

. - 1 . .
wléB, w2¢B; P(B) = 1 if w €B, w,eB; P(B) = 5 otherwise. By a yarlant
of the Kolmogorov O-1  law, %+ is trivial under the power product
probability P on ®B(i: i >0). Now for neZ, let gn(w) =1 if

Q(n)eA,gn(w) = -1 otherwise. Then {gn} {6n}n,> o Where X ~Y

n>o0 ~
means that the random objects X and Y have the same distribution.

~

. It is a very special case of the Tulcea extension theorem that P can

{5 }

be extended. to neZ = “°n’nez

® in such a way that {gn} and. %_ is
trivial. Thus % _ is trivial, while % contains sets of probability

%. The - argument that %f # % implies a result in [5]. That is, if
@h, n=1,2,..., and » are o-fields of subsets of a fixed space, and
under a fixed prdbability e = nﬁl_<§n is trivial, it does not ﬁecessarily
follow that nﬁl ((ﬁ’nv D) and €v D coincide as measure algebr'as. (of
course set-theoretic inclusion in one direction is cléar.) For if equality
held, from two applications it would follow that under §, %ﬁ and 3
coincide as measure algebras. Section 5 contains a stréngthened version
of the forégoing exémple. |

¥ consists precisely of those measurgble sets whose measurability
does not depend on aﬁy finite number of coordinates. (This characteri-
zation applies to ‘%+\vin the context of Section 5.) Patently, % c &

~

properly, and & % 3, 8_, T,

e



{7)  Theorem. Suppose P is exchangeable. ‘Then‘}g  %+, %_, %f; %, g,
and any intersection of these not contained in ¥ n %_; %'{5, @3
coincide.as'measure‘algebras. _
Prbbf;‘ The argument given for (1), only slightly aitered, shows
that Ecé implies the existence of‘ He & satisfying P(EAH) = 0.
Now take Fezﬂ and fix ¥ > 0. There exists m < o and ‘

GeB(i: |i] < m) satisfying P(FAG).< 7. So
P(s™™F20)) = P(Eas™G) < 7 ,

end S GeB(i: i > 0). Thus there exists G'eB(i: i > 0) for which
* = E *
. P(FAG') = 0. Let G = lim sup S Gt, Then G €3 and P(FAG ) =0.

The rest is. obvious. ‘ <

i

This argument shows that if P i1s merely invariant under the shift,

that is, if P(S-;A) = P(A) for each Ac%, then as measure algebras

~

§c ¥'. Also, $ < ¥ . Rosenblatt noticed this in [L0]. Krengel and

Hc

Sucheston [§] have shown more.

5.; Generalizations., Motivated by the last paragraph, one might

hope that many of the conclusions of (1) and (7)‘still hold if ;P

is not exchangeable but only invariant under the shift. The followihg
‘eiamples éubstantiate’my previous assertion that most of the conclusions
no longer hold. In the first place, ¥ need‘not coincide with %f.

Assume that for each i € Z, éi = (4ee, B o) 17 cee) isa

i,“'l’ Si,o’ i,



sequence of fandom variables distributed as ... 6;1, 60, 81, eoe AN

the last section, and that "'é-l}-go’/élf .s. are independent. Let

L = (oee 1.-17 Y5 .0 yi 1 ces) be a (bilateral) sequence of sequences,
. S i Bl b

where y. .. = It is easy to see that the ¥y process is station~

® Vi3 7 Parg,y .
ary and that its future tail "og-field is trivial because it is the
smallest g-field contalning the future tail of each o] sequence. The
past tail is also triyial, But the observations {xi: ]ilzp};determiﬁe
every Si’o . for eVery n, and so the g-field corresponding to § is
as rich as the Borel unit interval. Freedman has put forward the at-
tractive conjecture that if 8 is finite, then. %f and ¥ conincide
as meagsure algebras. A very special case of this conjecfure'will_be
nmentioned at the end.

One direction in which something Qf (7) éan be salvaged is the
coincidenée of %+ and %_ in case B is finite. To see this,
apply Theorem 2 of [9] first to B(i: i<0) and S-l, then to
B(i: i>0) and S, and find that both ¥ ana %_ correspond to
Pinsker's maximal partition - what Rohlin and Sinai term n(T). Be
warned that in general %+ and %_ can be very different. For sup-
is any sequence of independent, identically

. POSE  see X 5 X

SIS T
distributed, nondegenerate random variables, and for 1 € Z, ti' =
(oees X Xi%r’xﬁ?. Then {Ei} is stationary; clearly its past
tail is trivial, and its future tail is full., OF course {;;.i-}, as well

as the previous {Ei}’ can be realized on the unit interval. And note

that {Ei} is Markov; the remaining examples share this property.



It is hopeless to éxpect \ﬁ and %+;~ or %_ , to coincide. A
stationary process with trivial future or trivial‘past is mixing (see
{11, pége‘lQ;, or [2], Theorem 2}, and there are stationafy Markov
processeé‘which are ergodic but not mixing. In fact, any recurrent, coun-
table gtate'Markov chain‘with stationary:transition probabilities and
cyclically moving subclasses has a nontrivial future tail o-field.
Much more is-shown in [2]. The third example of that paper is a
stationary Mérkov chain with three states, and tail and exchangeable
o-fields which do not coincide as measure algebras. While the paper
treats unilateral processes, the conclusions persit in the bilateral
case, More precisely, Theorem 1 becomes: >if“{xn}néz is a station-
ary Markov chain with countable state space, and A is determined
measurably by‘the xn's but does not depend on any finite number of
tl’\lem, then/’ P(A]xo - i) = PE(A] Xy = i} for each state 1. According
to the extension of Corollary 1, P(Aixo =1i) = P(Alxo = j) if 'i and
j are in the same cyclically moving subclass. Together, these facts
and the aforementioned Example 3 substantiate the assertion about
_ % and &. The facts along with the results of [2] also serve to

establish Freedman's conjecture in the special case that P is the

measure of a Markov process.



6. Intersections and products of o-fields. The distribution of the

random variables § in Section 4 -can be utilized to solve a problem pre-
viously posed ([3], p. 41h). Assﬁme that Q is a set and that for each
réal t 8t- is a g-field of subsets of Q. 'The %t's are.nondecreasing.
Let 93,; be the g-field of subsets of the interval (~,t], and for real

s and s' let 3 x g, Dbe the product o-field on (-0,8] % 2. In the

reference cited it was noted that for each real a,

n cBa+6 X %a+8) = n (ﬁa X 3

) .
5>0 5>0 at+d

However there remained the problém as to whether these two g-fields

coincide as sets with 8 X3 ot where § . = 0 % Meyer has
& s>0°

answered the question afflrmatlvely when the product flelds are. augmented

+B5°

V% , wWhere ﬁ -is the

R
_ Borel o-field on (-w,m). But the question as originally posed has & neg-

. by the null sets of a product measure on f? X

ative answer. For there exist a family of g-fields _%t. and a probability
on B, X ’{ ﬁt' under which . 2 O(SB X ¥ 45) and 3i X §,, do hot coin-
cide as measure algebras.

et Q' = {-~1,1}, and give Q' the discrete o-field. Let Z' = AT (o},
and let 0 = (9.')Z'. Give Q the product cefie'ld; call it 'SB’. ‘The
o-fields B (i: 1 > n) are defined as in Section 2. For ieZ' andv
Req  let Xi(a) = w(i), the i coordinate Of‘ ®. There exists a pro-

bability P on 8- under which (X ) has the same distribution as

l""
(6 6 » ) o . )+ F v Z+ . .th
845875 »1n Sect}on. . For ie .let X4i be the 1™ Rademacher
function on the unit interval, so if ye[0;1] X_i(y) is 1 or -1

according as the integer j for which j-l/2l <y < j/2l is odd or even.

9



Extend the démain of defihition‘of X_i to the interval (-w,l]b by
x_i(y) =0 if y <O0.

In an abuse of notation the X's will be v1ewed as functions on
4;(-w;l] x»a:' for i>0 X ((y,w)) - §(1), snd for 1 <0 Xy ((y,w)) = X, (¥).
It is easy to show that P can be extended to ﬁl X 8 in such a way
. that tﬁe sequence r'f'X-l’XO’Xl";' has the same distributionfas the
aforementioned-sequence ...8 1*50’61’ .

Now the %, 's will be defined. When t <0 let g = {a,0}; when
t>2 let g = 85 vhen n =1,2,... and 1/n+l < t < 1/n, let |
9(1 i>n-1). |

t"

For each 5> 0 the event A = [X, = 1] differs by a P-null event

- from an event in‘ $ X % 5° Therefore A differs by a P-null event

from an event in N (ﬂ X 3 T ). Now suppose that there exists an
- 8> 0 140!
“event B¥ in B, X B, for whlch P(B%AA) = 0. This assumption will lead

to a contradiction which will complete the érgument that ﬁl X %l+ and

n (8 X g do not coincide as measurevalgébras.

5> 0 L ;+6>
To begin fix g, 0 K< g < 1/2. It follows from elementary arguments

that there exists neZ+, Bl""’Bn € %l, and Fl""’Fn € %l+ satisfying

P(AA] U (B X F, J1) < e. The Kolmogorov O~1 law implies thét

P((-,1] i F) is 0 or 1 for each F e Bpp So for each fixed i

either P(Bi XF) =0 or P((Bi X Q)\(Bi X F;)) = 0. With no loss of

generality, assume that Fi = Q for each i. Moreover, for each i also

P((Bi X Q)\((Bi nl0,1]) X Q)) = 0 because this event is a subset of

[X_l = QJ; Again‘with no ioés of generality, assume that each .Bi is a

Borel subset of the interval [0,1]. Thus B = U (B X F, ) is determined

i=1

Clearly A and B are independent. Recall

.measgrably by {X-i}ieZ+'

10



that P(A A B) < % Now P(A AB) =P(A) + P(B) - 2P(A)P(B). Since
Ll
2° 2
Loosely speaking, the foregoing construction shows that, when applied

P(a) = P(X, = 1) = + P(B) - B(B) < 5, which is impossible.

- to o-fielaé, the operations countable intersection and product do not

commute. It would be intereéting to know whether finite intersection and

produét commute.

11
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